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The effectiveness of a finite difference scheme for solving problems in continuum 
mechanics is demonstrated by a series of problems ranging from elasticity theory to gas 
dynamics. All of the results shown were plotted directly by the high speed computer 
and permit an easy evaluation of the technique. 

In 1950 von Neumann and Richtmyer proposed the artificial viscosity method 
for calculating problems in hydrodynamics. The technique was described for 
one-dimensional flow with the Lagrange form of the hydrodynamic differential 
equations. The region of flow was divided into a finite mesh of grid points at which 
the various parameters could be specified. The differential equations were then 
approximated by a second-order-difference scheme involving these grid-point 
parameters. It was found that the quadratic artificial viscosity used by 
von Neumann and Richtmyer to treat shocks did not provide sufficient damping 
for non-physical oscillations that usually occurred in the grid. However, this 
difficulty is easily overcome by incorporating a linear viscosity to stabilize the grid. 
The result is a second-order-difference scheme that gives very accurate results for 
a large range of problems in one space dimension. 

When the finite mesh and artificial viscosity concept is extended into two space 
dimensions, many different ways of formulating the differential equations and the 
finite difference equations result. Also, the additional degree of freedom in the 
mesh permits an increased possibility for nonphysical grid distortion, analogous 
to the non-physical oscillations in the one-dimensional problem. The problem of 
grid distortion plus the possibility of formulating the equations in many different 
ways has led to a search for the best method of solving problems in hydrodynamics 
using the original von Neumann-Richtmyer idea. One of the approaches taken is to 
damp spurious signals in the grid by including more grid points in the difference 
operators. One prescription for incorporating more grid points into the difference 

* Work performed under the auspices of the U.S. Atomic Energy Commission. 
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equations is to include third-order terms in the difference operator. This implies 
that the problem of grid distortion is due to insufficient accuracy of a second-order 
difference scheme. Grid stabilizing by incorporating more grid points in the 
difference. operators is due to artificial diffusion analogous to artificial viscosity. 
The disadvantage of this method is that an effective artificial viscosity is hidden in 
the equation, usually operating in an unknown way. In some difference schemes a 
hidden artificial viscosity can be identified by substracting the von Neumann- 
Richtmyer equations from the difference scheme. The terms left over may then be 
collected and interpreted in terms of an artificial viscosity. 

The approach taken at LRL was to develop a second-order-difference scheme 
that used the minimum number of grid points and hence had the minimum implicit 
artificial diffusion. The grid is then stabilized by adding an artificial viscosity to the 
equations of motion. In this manner the operation of the artificial viscosity is 
known, and its magnitude can be compared with the magnitude of physical 
stresses in the problem. 

The finite difference operators that replace the partial derivatives are formulated 
so that they have an important bearing on the physics that the set of partial 
differential equations is meant to describe. For example, space derivatives are 
defined as the summation of the normal component of a flux around an enclosed 
area. Thus, conservation form is introduced into the difference equations. The 
two-time step and the two-grid system of von Neumann-Richtmyer are employed. 
One grid system is used to calculate gradients of pressure stresses and the other to 
calculate the divergence of the velocity vector. The pressure gradients are centered 
at grid nodes at integral times intervals. The divergence of the velocity is centered 
at mid-points on the grid at g-time intervals. 

I, II, III, IV Grid for 1, 2, 3, 4 Grid for 

calculating YP calculating T-G 

P = pressure at time n w’ = velocity at time n + l/2 

The resulting difference equations have these properties: (1) they conserve 
angular momentum; (2) they transform in the same way as the differential opera- 
tors. For example, in 2-D cartesian coordinates the terms in the difference equa- 



408 WlLmNS 

tions that represent the partial derivatives in the left side of Eq. (1) below will 
collect and be identically equal to the time centered difference of the quantities on 
the right side of each equation. 

v. #L$ W = velocity vector 

Y = volume 

V x W=sin& o =-angle of rigid rotation. 

(1) 

a) b) 4 4 

4 
Time -lnsec 

a, b. c) Position of plate at 3 times, pet. 
Lines show direction of maximum principal 
stress. Displacements are multiplied by 10. 

d) Lagrange grid at same time as (c). 

e) Posltlon-vs-time for a point in the 

center of the bottom edge. 

Fro. 1. vibrationofandasticplatedampedatthetop.Pla6e~5.25gn;plate~~ 
1 cm; damity-7.72 &ma; buIk modulus-l.88 Mb; shear xnoduh1~-0.804 Mb. 
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This fact leads to zero truncation error in the deli&ion of stress and strain used 
in the formulation of the elastic-plastic problem. 

A computer program (HEMPcode) that uses the above di&rence scheme is 
described in UCRL-7322 Rev. I. The program has been used for many years at 
LRL to solve problems in 2-D continuum mechanics. The accuracy of the program 
is 4.1 yO when compared to problems that can be solved by other means. For 
example, check problems have been done with 2-D steady state detonation cal- 
culations solved by the method of characteristics and compared with the solution 
obtained by the time dependent computer program. 

c_I Region of l/2% 

a) All displacements from aiginol nctonguiar 
grid are X100. b) Right, left and bottom boundaries are fiied. 

“E”P-- CYCLE TIl!s STRETCH 

ERS “‘M. so 66xloaos 52 60271C94 

- 

FIG. 2. sulfacewaveafromthereleaseofstraineaerllyinanelasticmdiutlLBlllkmodullls- 
0.4 Mb; shear modulus-O.15 Mb; dead@-2.5 s/an’. 
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This paper demonstrates the effectiveness of the program for solving a range of 
physical problems. Examples are given in elasticity, elastic-plastic flow, seis- 
mology and gas dynamics. 

The first calculation, Fig. 1, shows the vibration of an elastic plate clamped at 
one end. The plate is set into motion by assigning a velocity k = -lo* cm/p set 
to the Lagrange coordinate at the lower right-hand corner and then releasing the 
velocity after 5Opsec. The plate then oscillates with a period of 32Opsec. This 
agrees with the fundamental frequency that can be determined from elasticity 
theory. (See p- 379, Mechanical Vibrations; A. H. Church, John Wiley, 1963.) The 
calculation was allowed to run for over 10,000 time steps. The wave amplitude and 
frequency remained constant. The total energy, kinetic plus internal, remained 
constant to within 0.1 % of the original energy put into the plate. An artificial 

Plate with circular cutout 

a) Grid at time 0 b) Plate after pulling. Lines show direction of 

principal stress for po5itions Wbfe the 
pl0sti.e strain is greater than 1%. 

Plate with two notches 

a) Grid at time 0 b) Plate after Pulling. Lines show dimctian of 
principal stress for positions where the 
plastic stmin is greater than lO?& 

Fro. 3. Tension tests of aluminum plates described by an elastic-plastic equation of state; 
yield stress: 3 kb. The plates are pulled in the diiion of the arrows. 



FINITE DIFFBRENCE SCHEME FOR CALCULATING PROBLEMS 411 

viscosity was used to stabilize the grid. The point here is to show that the physics 
of the problem was not influenced by the artificial viscosity. 

Figure 2 shows a preliminary calculation for studying earthquakes. An initial 
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FIG. 4. Pressure, kb, vs position, cm, for a one-dimensional shock induced in air by a constant 
IO-kb pressure applied at the left boundary. 

(a), (b) Incident shock proceeding through the air that was initially between -5.00 and 
0.00 cm and at 1tP kb pressure. 

(c), (d) IO-kb shock re&cts as an 80-kb shock from the fixed boundary at 0.00. Note pressure 
scale change. 
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stress field has been introduced into the grid by displacing one part of the grid with 
respect to the other. The strain energy is released by allowing fracture to occur on 
a vertical line. The surface waves with the largest amplitudes are travelling at the 

Center of explosion 

I-- Axis of cylindrical symmetry 

I 

.- 

b) 
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velocity of Rayleigh waves. The elastic constants used to describe the material are 
appropriate for granite. 

Figure 3 shows calculations of tension tests for a plate with a circular cut-out and 
for a plate with two triangular notches. The object here is to demonstrate the 
difference scheme for problems with irregular boundaries. The equations of state 
used correspond to aluminum with an elastic yield strength of 3 kb. 

Figure 4 shows a calculation of a strong shock proceeding into a gamma law 
gas and reflecting from a fixed boundary. Reflected pressure is seen to be eight 
times the incident pressure. This is the correct multiplication factor for a 

4 9 Some time os (e) showing the Lagrange grid 

FIG. 6. Body with cylindrical symmetry about the long axis moving at Ma& 2.34 h ah. 

(a) - (e)-&reasina time, w. 
(fj-same time as (e) showing the Lagmnge grid. 
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y = 1.4 perfect-gas equation of state that can be calculated from the Hugoniot 
equations. The calculation used a quadratic and a linear artificial viscosity. This 
problem is a fairly critical test of a computer program to calculate strong shocks 
in a compressible medium. The pressure profiles shown here were plotted directly 
on a cathode-ray tube and photographed. 

Figure 5 shows the calculation of a Mach stem produced in a y = 3 perfect gas 
by an exploding sphere. A search routine in the computer locates the maximum 
value of the artificial viscosity in a given space region and plots a circle, thus 
automatically tracing out the shock space positions. The plots were made on a 
cathode-ray tube and photographed as described above. Shock positions for the 
figures that follow were plotted in the same manner. 

Figure 6 shows a calculation of a slender body moving at Mach 2.34 through air 
described by a y = 1.4 perfect gas. The initial air pressure inside the calculation 
grid of the air is one atmosphere. A boundary pressure of one atmosphere is 
maintained on the right and left sides of the grid representing the air. 

Figure 7 shows a calculation similar to the one shown in Figure 6 except that the 
velocity of the body has been slowed down to a Mach number less than one. It is 
seen that the bow shock has detached. The shocks behind the slender body are due 
to reflections from the fixed boundary of cylindrical symmetry. 

a) Supersonic. b) Subsonic. Bow shock has detached. 

Shocks behind the body are from bow 
shock reflections with .the cylindrical 
boundary. 

FIG. 7. Similar to Fig. 6, except the body has been slowed down from Mach 2.34 to Mach 0.8. 
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